1988

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, NO. 11, NOVEMBER 1993

Scattering by a Dielectric Obstacle in a
Rectangular Waveguide

Jawad Abdulnour and Louis Marchildon

Abstract— A method for the computation of S-parameters
associated with a rectangular waveguide with a rectangular or
cylindrical obstacle of arbitrary complex scalar permittivity is
presented. The method uses modal analysis and integral rela-
tionships to connect appropriate components of the fieid. In
this way, convergence is achieved faster than by point-matching
techniques. Our method is well adapted to resonance problems,
as illustrated by comparison with both theoretical and experi-
mental results.

I. INTRODUCTION

HE scattering of electromagnetic waves by a dielectric

obstacle in a rectangular waveguide has been the subject
of ongoing research for more than 50 years. To this day, most
of the work has focused on the case where the sample’s
properties are uniform in one of the transverse directions of the
guide. This makes the problem essentially two-dimensional.
Variational methods for this problem were developed by
Schwinger and Saxon [1], and applied by Marcuvitz [2]
to a cylinder whose diameter is small with respect to the
wavelength.

A number of authors have gone further and tried to over-
come limitations of earlier work. Wexler [3] has given a modal
analysis of waveguide discontinuities which is not restricted
to small samples. Modal analysis, in conjunction with point-
matching techniques, was also applied by Nielsen [4] and
Sahalos and Vafiadis [5] to cylindrical samples. Leviatan and
Sheaffer [6] have used a moment method that simulates the
field by a distribution of fictitious currents. Their formalism
essentially applies to any two-dimensional geometry. Such is
the case also with finite- and/or boundary-element methods,
for instance those of Ise and Koshiba [7] and Wu ez al. [8].
Araneta et al. [9] have developed a higher order variational
method for a cylindrical sample.

These developments have all improved significantly on
earlier work. Each one is characterized by a wider or narrower
range of applicability, and more or less economical use of
computer resources. Discrepancies remain, however, among
results obtained by different methods, particularly near a
resonance. :

The purpose of this paper is to develop a formalism, based
on modal analysis, that can handle cylindrical as well as
rectangular samples. The method, instead of using the point-
matching techniques of [4] and [5], pushes the analytical
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Rectangular guide with dielectric sample uniform in the y direction.
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Fig. 1.

treatment one step further. Where it is applicable, it provides
a reliable, rapidly converging algorithm for the determination
of S-parameters.

Section II is devoted to the statement of the problem and
modal analysis. Sections III and IV consider the rectangular
and cylindrical geometries, respectively. Results are shown in
Section V and compared with existing literature. We conclude
in Section VL

II. MoDAL FORMULATION

We consider a rectangular waveguide, with z and zy the
longitudinal and transverse directions, respectively. A dielec-
tric sample, whose cross section and permittivity are uniform
in the y direction, is contained in the guide. The situation
is illustrated in Fig. 1. A TEjy wave, of unit amplitude,
is incident from the left. In this essentially two-dimensional
geometry, the only nonvanishing component of the reflected
and transmitted electric field is E,.

Only TE,,; modes are produced by the scattering process.
As usual, we assume that the frequency of operation is between
the cutoffs for the TEi9 and TEsg modes. Far from the
sample, then, only the TE;o mode survives. The amplitudes
of the reflected and transmitted TE,, waves, related to the
S-parameters of the two-port system, are what we want to
determine.

The interior of the guide, as shown in Fig. 1, is divided into
three regions. The sample is entirely contained in region IL
Boundaries can be chosen in a number of ways, depend-
ing on the sample’s geometry. Region I extends to the left,
and region III to the right of the sample. We have vacuum
permittivity and permeability in these regions.

In the configuration shown in Fig. 1, nonvanishing compo-
nents of the electromagnetic field are E,, H,, and H,. In
region I, they are given by a superposition of the incoming
TE19 and reflected TE,,o waves. With a common factor
e?“'removed, we have

Ey=¢1e7 + Y Rpgpme™”

m=1
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Fig. 2. Rectangular sample with length 2L and width b.
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The symbol ¢,, denotes a normalized trigonometric function
which, when the origin of the z axis coincides with the lower
conducting wall, is given by

dm(z) = \/—% sin( ng;—) . )

We have @], = Opu, /O, and the constant R, is the amplitude
of the reflected TE,,o wave.

In region III, the fields are given by a superposition of
transmitted TE,,q waves. We have

oo
E:lI/H = Trndme™ "™*
m=1
HIII — -7 mT i —YmZ
x wito 7;7 mPme

j oo
H'=—=— % Tndle . ®)
’ Wi mzzl

Here T, are the transmitted wave amplitudes.

The sample permittivity is, in general, a complex num-
ber, as well as the coefficients R, and T,,. To determine
them, we write down, depending on the geometry, appropriate
expressions for the fields in region II. The fields are then
connected on the boundaries between regions I and II, and
between regions II and III. Rather than by point-matching, the
connection is effected here by an integral method. This yields
values for R,, and T,, and, in particular, for By and 7.

III. RECTANGULAR SAMPLE

The rectangular geometry is shown in Fig. 2. The sample
has complex permittivity ¢ (and permeability fp). It has
length 2L, width b, and is a distance d away from one of
the conducting walls. The distance from the other wall is
d = a — b — d, where a is the width of the guide (in the
z direction). Coordinate axes are defined as shown.
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The fields in region II can be written as

E= i Antpne™* + i Bpipne™*
n=1

n=1

I _
HS =

z Anrnwne_rnz - Z Bnrnwner\nz]
n=1

n=1

g

Wit

HY = ﬁ [Z Antpe ™™ + 37 an,gernz} NG)
0 {n=1 n=1

Here A,, and B,, are complex constants. 1, are the transverse
mode functions, and ), = 9, /Iz.
The TE, transverse mode functions are given by

fln Sin(Xlnx)a
fo<z<d

Jorn Sin(X2nT) + g2n cos(X2n), (7)
ifd<z<d+b

fansin[xin(a - 2)],
ifd+b<z<a.

Here fin, fon, 92n, and f3, are constants given by

Yn(z) =

fon = X1n c08(x1nd) c08(x2nd) + X2n sin(x1nd) sin(x2nd)
92n = —X1n €08(X1nd) sin(x2nd) + X2n sin(x1.d) cos(x2nd)
fin = X2n [COS(ind) sin(xond) ]

tn Xin COS(Xlnd) COS(Xlnd) gan

fan = Xon [_cosDxan(d+B)] - sinlxon(d+ D)
" Xin | cosGund) T cos(xand)
®
‘We have
Xin = [wzlLo&o + Ffb] 12
Xn = [w2poe +T2]17, ©)

where I',,, the propagation constants, are calculated from the
characteristic equation

(Xln)2 tan(xan) - (X?n)z ta’n(XZ'nb) ta‘n(X1nd) tan -
(x1nd') + (x1n) (x2n) {tan(x1nd) + tan(x1nd’)} = 0.
(10)

Equations (8) and (10) considerably simplify in the special
cases where d = 0 (sample adjacent to wall) or d = d’ (sample
midway between walls).

The fields must now be connected on the boundary between
regions I and II (z = —L) and on the boundary between
regions II and III (2 = L). This can be done by point match-
ing, that is, by equating corresponding field components at
selected points on boundaries, and solving the resulting linear
system for the unknown coefficients. Instead of doing this,
however, we will rather use an integral method, akin to the one
used in [3] in a somewhat different context. It turns out that this
significantly improves convergence or, to put it differently, the
accuracy of the S-parameters obtained from a given number
of modes.

On the plane z = —L, the tangential components E; and H,
of the fields must be continuous. So we equate El(z = —L)
with EI(z = —L), and similarly with HI(z = —L) and
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HI(z = —L). The two resulting equations are then multiplied
on each side with ¢, and integrated over x. Making use of
the orthogonality of the ¢,, functions, we get

o0
~Rpye~ L+ z Ape™ P, .+

n=1

o0
} :Bne_F“LPmn = S1ment
n=1

0o
Rm’Yme_’ymL + Z AnrnernLPmn -

n=1

> BTne " P = mbime™ . (11)

n=1

Here 61, is the Kronecker delta, and
Poun = / (@)t () dor (12)

On the plane z = L, we equate E1' with ", and H;' with
HI'. Working as before, we get

o0 oo
T L 4 Z ApeTmlp o+ Z B P, =0

n=1 n=1
o0
_Wmee—qu + Z Anrne_FnLPmn -
n=1
oo
Z B, T "' P = 0.
n=1

(13)

We now combine the two equations (11) together to elimi-
nate R,,, and similarly with (13) to eliminate T;,. Since
Y161m = YmO1m, the result is

> An (1 + Lo )PmnanL +

n=1 Tm
- I'n - L L
Y B,(1- == | Pope ™l =251
n=1 Ym
o
I _
ZAn<1 - —_>Pmne Inl +
oy} Ym

= r
> B, (1 + = )PmnanL =0. (14)
n=1 Fm

These equations, when suitably truncated, constitute a finite
linear system for A, and B,,. The constants -, are given by
(2) and (3), and T, are obtained by solving the characteristic
equation (10). This must be done numerically. Conversely,
the integrals P,,, can be calculated analytically. Once (14)
is solved for A, and B,, the reflection coefficients R,,, and
transmission coefficients T7,, are obtained from (11) and (13).

The solution of (11) and (13) gives, through (14), the
coefficients A,,, By,, Ry, and T, if the sample permittivity e
is known. In practical applications, one is often interested in
the inverse problem, that is, to find € if a coefficient (say R;
or T7) is known. It is worth noting that (11) and (13) can also
be used in that case. The problem is then nonlinear but can be
solved, for instance, by the Newton—Raphson method [10].
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Fig. 3. Concentric dielectric samples of radii r; and r3.

IV. CYLINDRICAL SAMPLE

The cylindrical geometry is shown in Fig. 3. Two concentric
dielectric samples, of radii vy and r and permittivity e; and
g9, respectively, are centered midway between the conducting
walls. Here it is convenient to choose coordinates so that the
origin coincides with the samples’ center, The mode functions
in regions I and III then become

buto) =2 {2 (o 5 )}

As a consequence of the symmetry about the yz plane, we
need keep only odd values of m.

We now address the question of the choice of boundary
for region II. Nielsen {4] originally chose the two planes at
z = a/2 and z = —a/2. Sahalos and Vafiadis [5] have
chosen a circle of radius a/2, centered on the origin. From a
fundamental point of view, both choices are objectionable [11].
Nielsen’s choice involves using a representation of the fields
in terms of cylinder functions [see later, (16)] at distances
r > a/2, where the series is not known to converge. (See,
however, the discussion at the end of [11]). The choice of
Sahalos and Vafiadis, on the other hand, involves using modal
expansions (1) and (5) at points that do not belong to a
uniform cross section of the guide. In Fig. 3, these are points
in regions I and HI directly above or below samples.

Thus, it may happen that modal expansions (1) and (5) do
not provide an exact representation of the fields at those points
described earlier. For cylindrical samples of arbitrary radii,
the error incurred is difficult to estimate beforehand. There is,
however, a well-defined limit in which the error goes to zero,
namely, the limit of small radii. In [5], the field matching is
done on the broken line shown in Fig. 3. It is easy to see that,

(15)

as sample radii get smaller and smaller, the arc lengths of

the broken lines directly above or below samples go to zero.
In this limit then, modal expansions (1) and (5) are correct
on essentially all the contours where field matching is done.
The outcome is that the choice of Sahalos and Vafiadis is
certainly adequate for samples with small radii. We shall see
in Section V that it also gives very good resuits for samples
with fairly large radii.

Thus choose the three regions I, II, and III as shown in
Fig. 3. In the zz plane, we introduce polar coordinates (r, §)
so that the z axis coincides with § = 0. In region I, the fields
for r > 7y (i.e., outside the samples) are then given by [4]

E;I = Z enZy (kr) cos(n)

n=0
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II: JZ

I _
H; =

enZn(kr)sin(nd)

—j ,
o ngo enkZ, (kr) cos(nf) . (16)

Here e,, are constants, and 7,, is a linear combination of the
Bessel and Neumann functions of order n, given by

Zn(kr) = fadn(kr) + Yo (kr). a7
We have
fo= L2152 (18)
wsy — 84
where
81 = kQYn(sz)Yé(kz’f‘z) — kYé(k’f‘z)Yn(kig’r‘z)
8o = k2Yn(k7'2)J,:L(k2’r‘2) - kY,.:(sz)Jn(k’QTz)
83 = k‘an(k’rz)Yé(kgTz) - kJ,’L(k?"z)Yn(kz’l'z)
84 = kz] (kT‘g)Jl (k27‘2) kJI (sz)J (k‘z’l“z)
k‘lj (kz’l"1)J (kl’f'l) - kQJ/ (k27'1) (klrl)
kYo (ko) J} (kiry) — koY (kary) T (Rrr)
(19)
and
k= vwinoeo
k1 = v/w?uoey
k2 = Vw?poes . (20)

Here J;,, Y, and Z, denote the derivatives of J,, Y;,, and
Zy with respect to their arguments.

In regions I and III, we represent the fields by (1) and (5).
Continuity of E, and Hy on the boundary between regions I
and II yields (7/2 < 8 < 37/2) [5]

‘Zen ( )cos<n9 + Y Rupme™* =

m odd
— ¢1 e Nz

S c.kz, ( ’“2 ) cos(nd)

n=0
Z Rm{’)’mﬁbm cosd + ¢, sin 0}67’”2

modd

= {711 cosb + ¢\ sinfle "%, (21)

Similarly, continuity on the boundary between regions II and
I yields (—7/2 < 8 < 7/2)

—Zen ( )cos (nf) + Z Todme ™% =0

n=0 modd

Z enk ), ( ) cos(nf) +

Z Tm{’Ymd’m cosf — ¢, sinfle "™ =0.
m odd

(22
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Point-matching techniques were used in [5] to solve the
linear system (21) and (22). Here we use an integral method.
We multiply (21) and (22) by cos(pf), and integrate on df
from /2 to 37/2 in the first case, and from —7/2 to /2 in
the second. Making use of the fact that z = 0 is a plane of
symmetry, we obtain

—Zen (5 )+ (17 X Ry = (102
modd
/ ka _
ZenkZ Ly — Z RnQt, = —Q1,
n=0 m odd
—Zen ( ) np+ Z T
modd
Seir(2)s 0 3 ety oo,
n=0 m odd
where
Inpz/ cos(nf) cos(pf) db
/2
/2
Jnp = / cos(nd) cos(pf) df 24
0
and

/2
= / brm, cos(ph)eT 1= df
0

= / {Ymbm cos 0 & ¢, sin 8} cos(ph)e ™= df .
w/2

(25
Here we recall that z = (a/2) cosf.
It is easy to see that
0, ifn#p,
Lnp + Jnp = {71'/2, ifn=p#0, (26)
, ifn=p=0.

If we add together the first and third of (23) and use (26),
we obtain

k i
_epr<7a> b} [1 + dop] +

Z {(_1)pRm + Tm}P;p -

modd
Adding the second and fourth of (23), we similarly obtain

k
eka'( a) —;T—[l+5op] -

Y AR+ (D' Tn}Qf, = -0,

m odd

-(-1°Pt. @)

(28)

Eliminating e, from the last two equations, we finally get
k

= ([ 5 (5 Yo

modd

(s () )

= —(—1)%21’,( ka )P+ Z,,(%“)Ql-p. (29)
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In (29), everything is known except Ry, and T),. Indeed Z,
and Z, can be obtained from (17)-(20), and the P, and Qf,
are computed from (25) by numerical integration. Equation
(29), suitably truncated, becomes a finite linear system for R,
and T},. A related system was also obtained (but not used) in
[5]- We note that (29) can also be used for the inverse problem,
that is, finding the permittivity of a sample from measured
values of a coefficient.

V. RESULIS AND DISCUSSION

For nonmagnetic samples with complex permittivity e,
the S-parameters of the two-port systems shown in Figs, 2
and 3 are given in terms of the reflection and transmission
coefficients K1 and T; by

S11 = S92 = Iy
S10 =29 =T1.

Impedances of an equivalent T'-circuit are given by

2515
(1 - S11)? = (S12)”
_1- (811)° + (S12)% — 282
- (1-S1)* - 5% ‘

a

Zy

G

Computer programs have been devised to evaluate IZ; and
T for both the rectangular and cylindrical configurations. In
both cases, convergence is tested by increasing the number
of modes retained in the linear systems (14) and (29), until
results are stable. For £ as high as 150, ten modes are enough
to achieve excellent precision.

In the rectangular case, the characteristic equation (10)
is solved by bisection combined with the Newton—Raphson
method [10]. Explicitly, we set ¢” = 0 and find the first
N constants I',, by bisection. These results are used as
initial values in the Newton—Raphson method, which finds
eSsentially exact values of I',, through step-by-step increases
of .

In the cylindrical case, Pf,fp and Qf,ip are computed by the
Simpson rule [10]. Fifty intervals are enough to achieve a
precision of one part in 107.

A. Rectangular Case

Fig. 4(a) and 4(b) shows the amplitude and phase of the
reflection and transmission coefficients S1; and Ss;, in the
configuration of Fig. 2 with d = O (sample adjacent to
wall). Here € is real and relatively small. A is the free-space
wavelength.

Fig. 5 shows the amplitude of the reflection coefficient in the
configuration of Fig. 2 with d = d’ (sample midway between
walls). Here ¢ is real and large. Also shown in Fig. 5 are
experimental values of Yoshikado and Taniguchi [12], and
a curve they have obtained with the use of an approximate
Green’s function. The agreement between the experimentally
observed resonance and our calculation is striking.

(30)
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Fig. 4. S11 and S3; for a rectangular sample adjacent to wall. d = 0,
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Fig. 6. Amplitude of S1;7 for a lossless cylindrical sample. » = 0.05a,
A = l4a.

B. Cylindrical Case

Fig. 6 shows the amplitude of the reflection coefficient in
a configuration similar to that of Fig. 3, but for one sample
only. The resonance displayed occurs at ¢ = 112.5, which
agrees with results of Sahalos and Vafiadis [5] and Leviatan
and Sheaffer [6].

Figs. 7 and 8 show equivalent circuit resistances R, and
Ry and reactances X, and X, for a lossy dielectric. Our
results disagree with those of Leviatan and Sheaffer [6]. As
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Fig. 8. Impedance Z; for the sample of Fig. 7(a) and 7(b).

Table I shows, however, our results agree with those of Ise
and Koshiba [7], who have used a combination of finite and
boundary elements.

Table IT illustrates the convergence of our results. Note
that with four modes our results essentially agree with re-
sults obtained by Sahalos and Vafiadis [5] with nine modes.
This illustrates the rapid convergence of our integral method,
compared with point matching.
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TABLE I
IMPEDANCES Z, AND Zj AND TOTAL POWER REFLECTED
AND TRANSMITTED FOR A L0SSY CYLINDRICAL SAMPLE
(r=0.05a, A=14qa,&' =4¢)

Ise and Koshiba This work

- Ra Xa Ry X P Ra Xa Ro Xb P

0 310° [ -31872 | 1410% {00012 [10008 |7610™ | -3.1872 | 7210™ [o00009 | 1.0000
3 1.7096 | 14775 | 00009 [0.0012 [07563 | 1.709 |-14775 {00009 | 00009 | 0.7560
1 08677 |-00044 |00035 |00000 [05205 |08677 |-0.0043 | 0.0036 |0.0006 | 05292
20 05012 [0.1574 | 00063 00001 [04996 05012 | 01573 [ 00064 |-00002 | 04993
120 [o0o08 |02342 [o00183 |-00180 (07213 | 00907 [02342 | 00184 |-0.0183 | 0.7208
1000 |o00247 [02117 |oo0e1 |-00379 |08933 | 00247 |02117 00082 |-00382 | 08930
410° [610° 01903 |-0.0001 {-00470 |1.0002 [0.0003 |01907 | 0.0001 |-00470 | 09982

TABLE 1

AMPLITUDES OF Ry AND Ty COMPUTED WITH 2, 4, 6, AND
9 MODES FOR A CYLINDRICAL SAMPLE
(r = 0.25a, A = 1.27324q)

2 modes 4 modes 6 modes 9 modes
€ IR| ITE ] IRE ]I IR T | IR IT]
2 |[02436 |o9699 02430 [09700 |[02430 |0.9700 [0.2430 |0.9700
10 (01477 (09890 {00863 [09978 |00661 [09978 |00661 |0.9978
10 | (0.2784) | (0.9527) (0.0732) | (09928) | (0.0668) | (0.9978)
50 |0.7565 {06530 |0.7562 10.6519 (07582 |0.6520 |0.7582 {06520

Values in parentheses taken from [S].

We pointed out in Section IV that, strictly speaking, our
analysis of cylindrical samples is justified in the limit of small
radii. This case is interesting since concentric samples with
small radii (e.g., a liquid in a capillary, or a post with coating)
may be difficult to analyze with the finite- or boundary-element
methods. However, it turns out that our method also gives
an excellent approximation even in cases of large radii. We
have compared results of our approach with a calculation
based on boundary elements, for a cylinder with diameter
0.8a. For ¢ as large as 100, numerical values of the reflection
and transmission coefficients agree in both calculations on the
average to better than 1%.

In closing this section, we should like to point out that (11),
(13), and (23) were obtained through integration of the field-
matching equations over trigonometric functions. The result
is a procedure that converges faster than point matching. It
may turn out that weighting functions other than trigonometric
give different rates of convergence. It would be interesting
to investigate what type of weighting functions provide the
fastest rate. ’

VI. CONCLUSION

We have proposed a largely analytical method for the
computation of S-parameters of a rectangular waveguide with
rectangular or cylindrical samples. Integral operations are
used instead of point matching. Where it is applicable, the
method provides a reliable and rapidly converging algorithm.
The geometry, although restricted, is one frequently used
in applications. Our method can also be used in testing
computations with more general geometries.
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